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A B S T R A C T

Diminished ovarian reserve (DOR) refers to a decrease in the number and/or quality of oocytes in the ovary,
accompanied by a decline in reproductive potential, which is generally related to advanced age or ovarian disease.
In in vitro fertilization (IVF) clinical practice, managing patients with DOR remains one of the most challenging
tasks. In recent years, increased research on improving ovarian function has provided us with new insights into
treating patients with DOR. Many therapeutic options have been proposed to improve the ovarian function of
patients with DOR, yet they are not widely utilized in clinical practice because of limited evidence of safety and
effectiveness. In this review, we focus on the mechanisms from animal models and clinical trials that have been
applied to the treatment of DOR in recent years, intending to improve IVF outcomes in patients with DOR.
Furthermore, new insights and perspectives on the molecular and cellular regulation of follicular development
and ovarian reserve are emphasized to provide more clues for research on the treatment of DOR.
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Diminished ovarian reserve (DOR) is defined as a decrease in the
number and/or quality of oocytes in the ovary, accompanied by decline
in the level of anti-Müllerian hormone (AMH), a decrease in the number
of antral follicles, and an increase in the level of follicle-stimulating
hormone (FSH).1,2 The American Society of Reproductive Medicine
(ASRM) put forward an expert consensus in 2020 that DOR has no
diagnostic criteria, but it is mainly manifested in the decline in the
quality and quantity of oocytes and the decline in reproductive potential.

A number of risk factors for DOR have been reported in the literature,
including advanced age (over 35 years old), family history of early
menopause, genetic factors (45, X chromosome mosaicism, FMR1 gene
mutation, etc.), diseases that may cause ovarian damage (endometriosis,
pelvic tuberculosis, pelvic infection, etc.) or history of ovarian surgery,
chemotherapy for ovarian-related diseases, pelvic radiotherapy and
autoimmune diseases, smoking, and environmental factors.3–5 In
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particular, several terminologies such as primary ovarian insufficiency
(POI), poor ovarian response (POR), and other common diseases in
reproductive medicine are all closely related to DOR.6

DOR is characterized by decreased fertility and poor fertility out-
comes even when assisted reproductive techniques (ARTs) are used.7,8

Improving the clinical outcome of patients with DOR is still one of the
most challenging tasks in in vitro fertilization (IVF) clinical practice.9

Therefore, while continuously improving IVF treatment strategies, re-
searchers have also extensively tried to identify specific medication to
improve ovarian functions in patients with DOR to obtain better treat-
ment results. Researchers have obtained preliminary results showing
increased pregnancy outcomes in ART treatment. This review focuses on
the findings from recent studies and aims to present a more compre-
hensive view of the treatment of DOR.
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1. Human stem cells

Over the last ten years, extensive research has been carried out on
stem cell therapy for improving ovarian function. Human amniotic
mesenchymal stem cells (hAMSCs) have been shown to be able to
improve ovarian function in multiple studies. For instance, Liu et al. have
provided evidence showing an improved ovarian function of POF (pre-
mature ovarian failure) mice through hAMSC transplantation. Such a
beneficial effect is related to an improved intraovarian microenviron-
ment because of the promotion of follicular development and an increase
in granulosa cell proliferation and secretion in the mouse ovary.10

Additionally, the secretion level of EGF and HGF from hAMSCs was
higher than other growth factors which can improve the proliferation
rate and more effectively inhibit the apoptosis rate of granulosa cells.11

Human umbilical cord-derived mesenchymal stem cells (hUCMSCs) have
been shown to improve ovarian function through secreting several
paracrine factors, such as HGF, vascular endothelial growth factor
(VEGF), and insulin-like growth factor 1 (IGF-1).12 Similarly, human
amniotic fluid mesenchymal stem cells (hAFMSCs) are reported to be
helpful in the treatment of ovarian physiologic aging (OPA) by means of
resisting DNA damage.13 Human bone marrow-derived stem cells
(BMDSCs) produce higher numbers of preovulatory follicles, metaphase
II oocytes, and 2-cell embryos in mice with chemotherapy-induced
ovarian damage. Meanwhile, stem cells promote ovarian vasculariza-
tion and cell proliferation and reduced apoptosis during the treatment,
indicating that promoting ovarian angiogenesis is crucial for improving
follicular development.14 The effects of bone marrow-derived stem cells
on ovarian function in patients with DOR has been confirmed by a pro-
spective observational pilot study. The ovarian function improves in
81.3% of DOR patients with an increase in antral follicle count of three or
more follicles and/or two consecutive increases in AMH levels as success
criteria after autologous stem cell ovarian transplantation (ASCOT).
Meanwhile, the improvement is accompanied by a higher concentration
of fibroblast growth factor-2 and thrombospondin. In addition, ASCOT
increases the number of stimulable antral follicles and oocytes; however,
the embryo euploidy rate was low (16.1%) during controlled ovarian
stimulation.15

Exosomes derived from different stem cells also seem to be related to
ovarian functions. Human adipose stem cell-derived exosome (hADSC-
exo) transplantation significantly exerts better therapeutic effects on
mouse ovarian function. Furthermore, hADSC-exos also significantly pro-
moted the proliferation rate and inhibited the apoptosis of granulosa cells
via the SMAD-dependent signaling pathway.16 Similarly, animal studies
using a rat model show that bone marrow mesenchymal stem cell-derived
exosomes prevent ovarian follicular atresia via the delivery of miR-144–5p
in chemotherapy-induced ovarian failure.17 The exosomes derived from
human umbilical cord mesenchymal stem cells (HucMSC-exos) are re-
ported to stimulate primordial follicles by activating the phosphatidyli-
nositol 3-kinase (PI3K)/mTOR signaling pathway in oocytes. Furthermore,
HucMSC-exos stimulates primordial follicles by delivering functional
microRNAs, such as miR-146a-5p or miR-21–5p. In addition,
HucMSC-exos are capable of increasing oocyte production and enhance
oocyte quality in elderly female mice.18 The effects of stem cells and their
exosomes on inhibiting ovarian damage and alleviating age-related decline
in fertility indicate that stem cells exert paracrine effects.

Researchers began to explore the better strategy to improve ovarian
function with stem cells given that the stem cell therapy is effective. A
study comparing two methods (intravenous injection or IV vs. in situ
ovarian microinjection or MI) reveals that hUCMSCs IV is more effective
to restore ovarian function with a lower rate of ovarian granulosa cell
apoptosis accompanied by higher levels of SOD (superoxide dismutase)
and Bcl2 and higher efficiency in regular cycle recovery (25–37.5% with
IV treatment vs. 12.5–25% with MI treatment).19 Nevertheless, the
in-depth analysis of the stem cell and identification of key molecules
need further exploration to provide a new paradigm basis for cell-free
treatment strategies.
187
2. Dehydroepiandrosterone（DHEA）

DHEA, a C19 androgenic steroid, has a pro-inflammatory immune
function against cortisol. Researchers have reported a series of potential
mechanisms by which DHEA modulates ovarian function, including
improving follicular steroidogenesis, increasing IGF-1 (insulin-like
growth factor (IGF)-1) acting as a prehormone for follicular testosterone,
reducing aneuploidy, and increasing AMH levels and antral follicle
count.20,21 Also, Kuan-Hao Tsui et al. found that DHEA can restore
starvation-induced reactive oxygen species (ROS) production and mito-
chondrial membrane potential imbalance via upregulation of cyto-
chrome c and downregulation of BAX in mitochondria.22

DHEA has been used in the treatment of patients with DOR during IVF
in recent years.23 A retrospective cohort study showed that DHEA sup-
plementation increased oocyte and embryo yields, as well as cumulative
pregnancy rates in patients with DOR.24 However, a meta-analysis
evaluated the effect of DHEA therapy in patients with DOR. The results
showed that clinical pregnancy rates were increased significantly in pa-
tients who were pretreated with DHEA. In contrast, no differences were
found in the number of oocytes retrieved, the cancellation rate of IVF
cycles, or the miscarriage rate. Furthermore, the difference in the clinical
pregnancy rate disappeared when the data were restricted to RCTs.25

Taken together, DHEA might have a beneficial effect in patients with
DOR, but the method of DHEA treatment and its in-depth mechanism still
need further research to confirm these effects.

3. Growth hormone (GH)

GH has been used as an adjuvant in the treatment of infertility for
more than 25 years.26 It was initially used for patients with GH defi-
ciency, but recent studies found that GH and GH/IGF axes might improve
ovarian function.27 GH and IGF modulate key signal pathways, such as
the MAPK/ERK, Jak/STAT, and PI3K/Akt signaling pathway along with
the subsequent effects on cell division and steroidogenesis related to
ovarian function.28 Medium- and high-dose recombinant human GH
(rhGH) significantly increase the level of antral follicles but not AMH in
aged mice. In addition, several parameters, including retrieved oocytes,
MII-stage oocyte rate, ATP levels, mitochondrial membrane potential,
and frequencies of homogeneous mitochondrial distribution, increase
after rhGH treatment.29 Clinical studies also present a higher number of
grade 1 embryos (70.7% vs. 50.6%) and levels of estradiol and proges-
terone on the day of HCG administration in patients receiving GH. The
rates of cumulative clinical pregnancy were higher in patients who
received GH, yet the clinical pregnancy rates were not significantly
different.30,31 However, a meta-analysis analyzing GH application for
patients with POR during their IVF treatment showed that there was no
evidence for an increased live birth rate for a woman who received GH.26

In this regard, the role of GH treatment for patients with DOR awaits
further investigation and clarification.

4. Melatonin

Melatonin is an indoleamine produced by all cells.32 It has potent
antioxidant activity and can directly scavenge free radicals without
relying on receptors, acting as ROS.33 Previous studies discovered that
melatonin promote oocyte maturation, fertilization and embryonic
development by protecting oocytes and other follicle cells from oxidative
damage. In this regard, melatonin eliminates free radicals and reduces
oxidative stress in ovarian follicles, thereby protecting oocytes and
granulosa cells.34,35 In addition, PAR (poly adp-ribose) expression and
AIF nuclear translocation are significantly higher in cumulus GCs
(granulosa cells) of DOR patients, indicating PARP1-dependent cell death
may be associated with DOR. However, melatonin treatment effectively
inhibits polyADP-ribosylation (PARylation) and blocks translocation of
AIF into the nucleus, thereby reducing the risk of apoptosis in GCs.36 A
double-blinded, placebo-controlled clinical trial has been conducted to
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verify the effectiveness of melatonin. The results showed that patients
who received melatonin had higher serum estradiol levels on the trig-
gering day and increased numbers of good-quality oocytes and embryos.
However, there were no differences in clinical pregnancy rate or other
ART outcomes.37 Therefore, the effectiveness of melatonin in the treat-
ment of DOR still needs more clinical trials to confirm.

5. Traditional Chinese medicines

So far, many studies have worked on the influence of pivotal in-
gredients in Chinese herbal medicine on ovarian function, especially its
important role in the treatment of DOR. Polysaccharides of Fructus corni
(PFC) were reported to be antiaging molecules, and ovarian function was
protected after PFC treatment, which was assessed by sex hormone levels
and follicular development. Furthermore, treatment with PFC upregu-
lated Bcl-2 and downregulated Bax and cleaved-caspase-3, suggesting
that PFC inhibited apoptosis of granulosa cells in the ovaries of aging
mice.38 Yifuning is a traditional Chinese medicine recipe that can
significantly prevent ovarian failure in aging mice, which has been
shown to maintain estrous cycling, reproductive organ weights, and
serum sex hormone levels. Yifuning has been shown to reduce
age-induced p19, p53, p21, and Rb activity, and DNA damage by
inhibiting the expression of 8-OHDG and p53 in the ovaries.39 In addi-
tion, the Kuntai capsule improves damaged ovarian function via anti-
oxidant and antiapoptosis effects.40 A meta-analysis study comparing the
effectiveness of cotreatment with Kuntai capsule and climen for patients
with POF shows that cotreatment is more effective than climen alone.41

Although traditional Chinese medicine might have a favorable effect on
ovarian function, further exploring its specific mechanism is still neces-
sary to improve its application for clinical treatment.

6. Other therapeutic options

Although age-related ovarian failure cannot be reversed, many re-
searchers are still committed to discovering effective methods to improve
or preserve ovarian function. In recent years, various molecules have
been found to improve ovarian function or delay ovarian aging, but the
specific mechanisms are still unclear.

Rapamycin has been reported to be detrimental to follicular devel-
opment and ovulation with long-term treatment. However, shortening
the administration time of rapamycin to 2 weeks causes a rebound in
fertility and prolongs the reproductive lifespan in aging females, which
appears after short-term ovarian dysfunction. The improvement of
ovarian function is accompanied by increased oocyte numbers, higher
quality of oocytes, higher levels of Gdf 9 and Bmp15 and higher mito-
chondrial activity.42

A prospective observational cohort study has shown that intraovarian
platelet-rich plasma (PRP) infusion significantly improves the hormonal
profile and ovarian reserve status，as well as improves pregnancy out-
comes in intracytoplasmic sperm injection (ICSI) cycles in POR partici-
pants. A similar effect on improving ovarian function can be observed in
perimenopausal and premature ovarian insufficiency participants.43

Similarly, a study including 38 women (31–45 years old) with low
ovarian reserves and who had at least two unsuccessful attempts to
receive their oocytes through IVF shows laparoscopically assisted treat-
ment administration of 0.7 ml 1 � 106 PRP into the ovary is capable to
improving ovarian function based on the improvement in the levels of
FSH, luteinizing hormone (LH), estradiol, and AMH, as well as the
pregnancy rate.44

Curcumin (CRC) is a constituent of the traditional medicine known as
turmeric, and capsaicin (CPS) is the active ingredient of chili pep-
pers.45,46 CRC and CPS also have a beneficial effect on ovarian function in
a cyclophosphamide-induced POF model. A significant reduction in
serum levels of FSH and LH and an increase in AMH can be observed after
treatment with CRC and CPS. Moreover, malonaldehyde levels are
significantly reduced, glutathione levels and superoxide dismutase
188
activity are significantly increased, and histopathological damages, such
as atresia in ovarian follicles, vascular congestion, and hemorrhage
around the corpus luteum, are all attenuated by the treatment with CRC
and CPS.47

The immunopotentiator chitosan oligosaccharide (COS) is the only
basic amino oligosaccharide among natural sugars.48 Multiple studies
have discovered its unique role in restoring ovarian function. With
increased doses of COS, the total number of follicles and every stage of
follicles show progressive tendencies. Neutral red experiments revealed
that the phagocytosis ability of peritoneal macrophages becomes stron-
ger. Additionally, the levels of dynamic germ stem cell markers have a
positive correlation with the levels of immune factors.49 In the study
performed by Huang et al. COS significantly increases the organ index of
the ovary and immune organs, the levels of estradiol and AMH and
protein expression levels of IL-2 and TNF-α in the ovary. Additionally,
COS reduces the rate of follicular atresia, hence significantly promotes
the proliferation of ovarian germ stem cells (OGSCs), and protects
ovarian function.50

7. Conclusion

Numerous therapeutic options developed to improve the ovarian
function of women with DOR are gradually being utilized in clinical
treatment thus far. Moreover, according to clinical studies, DOR caused
by ovarian aging or ovarian diseases can be reversed or prevented effi-
ciently by current methods to a certain degree, which brings us more
motivation to explore the mechanism of regulating and preserving
ovarian function.
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